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ADJOINTS OF PROJECTIVE TRANSFORMATIONS AND
FACE-FIGURES OF CONVEX POLYTOPES

VICTOR KLEE

Introduction. When F 1s a proper face of a (convex) polytope P

in a Euclidean space E, an F-~figure of P 1is an intersection

PaH where H 1is a hyperplane strictly separating F from all
vertices of P~F. Here it is shown how, when the origin is interi-
or to P, the combinatorial (and, in a sense, the projective) struc-
ture of P's F-figures can be described in terms of the boundary
structure of the polar polytope P°. The main tool is the notion
of the adjoint of a projective transformation and a basic formula

relating adjoints to polars.

The, adjoint of a projective trégg{ggggg;gg& Suppose that U and

V are vector spaces paired by a biiinear form in such a way that
each space distinguishes points of the other [3, pp. 137-138], and
suppose the same 1s true of X and Y. All spaces are over the
same ordered field and both biline;r forms are denoted by { , ).
The treatment in tnis section is purely algebraic, with no mention
of topology, because we are concerned primarily with cases in which

there 1s only one reasonable topology compatible with the algebraic
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structure---namely, those in which U =V, X = Y, all spaces are
Euclidean, and the bilinear forms are the usual inner products.
For any set W contained in one of two paired spaces, the

polar set w° 1is contained in the.other; for example,
WeU=> W =(veV:we W= (w,v) <1} c V.

Recall that two linear transformations S:U+»X ) and T:Y+V are
mutually adjoint if (S(u),y)-(u,T(y)) for all ueU and yeY.
In the study of convex sets, the usefulness of adjoints is due
largely to a relationship with polarity that mayv be regarded as a

sort of commutativity of the following diagram:
U X ;
s

v g

Specifically (cf. [2, p.51]),

S,

T

WeU = T((SW)° (dmn T)) = w’n(rng T).

Theorems 1 and 2 below extend this commutativity result to pro-

Jective transformations and their adjoints. The treatment ol

A —— T e

projective transformations, being similar to that of [2][5], is
rather unnatural from the viewpoint of projective geometry but is
;ell suited to the study of convex sets. As is indicated later,
particular instances of adjoints appear in [2][5], though they are
not called that in the nonlinear case. Indeed, the results of
[2](5] would suffice for the study of face-figures. However, it

seems worthwhile to formulate the notion of adjoint and establish
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1.3

the commutativity result in full generality, for they are useful in
other situations as well.
Relative to the quadruple (U,V,X,Y) and the associated

bilinear forms, a projective transformation SiU+X 1is defined as a

transformation of the form

So(-) + Sl

= e s e

where SO:U¢X is a linear transformation, S1 is a point of X,
and 82 is a point of V (ef. [2, p.4][5, p.18]). We write
S:U+X, using three dots instead of two, to emphasize that the
domain of S may be a proper subset of U. Of course the domain
should be disjoint from the set {u ¢ U: (u,sz> = 1}, but subject to

that restriction various conventions are pessible and the best cholce

~may depend on the intended application. In studying the interplay of

convexity, polarity and projectivity, the domain should be convex
and include the origin 0, and for our present purpose it is conveni-
ent to define the domain of S as the largest set satisfying the

stated restrictions. Thus
dmn S = {u ¢ U: <u,82> s 1),

which is all of U when S2 = ) and otherwise an open halfspace.
A projective transformation T:Y+V is of the form

To(-) + T1

(2) T(:) = TT—(T;_,'T

where TO:YQV is linear, T1 ¢ V and T2 ¢ X. The transformations
S and T given by (1) and (2) respectively are sald to be mutually
adjoint if S, and T, are adjoint, S, = T, and S, = T;. To

o Y g,
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1.4

see that this definition is meaningful, note that So’ Sl’ and 82

are uniquely determined by S. That 1is obviocus in the case of
Sl = S(0). For So and 32 it follows from a routine calcula-
i tion that can be simplified by reduction to the case in which

| s, = 0.

1
Note that a projective transformation is linear if and only if
its adjoint is linear, and 1s affine if and only if its adjoint

preserves the origin.

THEOREM 1. The projective transformations S:U+X and T:Y»V are

mutually adjoint 1f and only if the following two conditions are

satisfied.
(a) dmn S = {u ¢ U: (u,T(O)) <1} and dmn T = {y € Y: (S(O),y) €131

(b) for all u ¢e dmn S and y ¢ dmn T,

—

I

(sw),y) ¢ 1 e (u,T(y)) < 1.

Proof. Plainly (a) holds if and only if Sl =T, 1

Suppose, then, that S1 = T2 = x ¢ X and 82 = T1 = v ¢ V, and note

and S2 =T

; that for each u e dmn S and y ¢ dmn T,

<S(U) :y)

A
-t

1A

1 &= (So(u),j> + (u,v) + (x,¥) ¢
and

(u,T(y)) < 1 - (usTo(¥)) + (u,v) + (x,y)

A

1.

1A

If S and T are adjoint then so are S° and To, whence
| {Sy(u),y) = (u,TO(y)) and condition (b) is satisfied. Suppose, on
| the other hand, that S and T are not adjoint, whence there exist

ue¢U and y ¢ ¥ such that

o NS e A e O 1S
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1.5

(3) (5,(w),y) # (u,T_(y)).

In attempting to show that (b) fails we may assume x #¥ 0, for a
similar argument applies when v ¥ 0 and the case in which v

and x are both 0 1s obvious. With x # 0, a simple one-dimensional
argument shows y may be replaced by a "nearby" point of Y so as to
preserve (3) and have (x,y) # 0. It is then possible, replacing y

by y/{x,y) and u by a sufficiently small positive multiple of u

or of -u, to preserve (3) while obtaining

max{{S,(u),y),{u,T (y))} + (u,v) > 0

and
(u,v) <1ls= (x,y).

We may assume

(%) (S(u),y) < (u,T (¥)),

for a similar argument applies under the reverse inequality. Since
(5) (u,T (y)) + (u,¥) + (x,3) > 1,

y may be replaced by (l-e)y, for a sufficiently small € > 0, so

as to preserve (4) and (5) and obtain (x,y) < 1. But then
(6) uedm S and y € dmn T,

and in view of (4) and (5), u may be replaced by nu for some

n e ]J0,1[ so as to preserve (6) and obtain
(so(u),y) + (u,v) + (x,y) <1< (u,To(y)) + (u,v) + (x,y).

That completes the proof of Theorem 1.




s o sess s

THEOREM 2. For each pair of transformations S:iU+X and T:Y-V

satisfying condition (b), and for each set W « dmn S, it is true

that

T((SW)°n(dmn T)) = Won(rng T).

Proof. Observe that for all y e dmn T and v = T(y) e rng T,

the following five statements are equivalent:
v e W weW= (w,v) < 1; we W= (w,T(y)) s 1;

welW= (S(w,y) sl; v e (sN)°

In the applications of the next section, Theorem 2's statement

of equality 1is called the basic formula.
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ﬁ‘% Face-figures of convex polytopes. The remaining discussion is

restricted to a finite-dimensional Euclidean space E with the
usual inner product. The notion of F-figure defined in the
Introduction extends the well-known notion of & vertex-figure
(2, p.49].

Now suppose that P and F are given, and H and H' are
two hyperplanes determining F-figures of F. For each (d+l)-face
G of P, the intersections GnH and GnH' are both empty or are
d-faces of PnH and PnH' respectively, and since all d-faces of
PnH and PnH' arise in this way it follows that the two F-figures
are combinatorially equivalent polytopes. When F consists of
a single vertex, the vertex-figures PnH and FPnH' are sections
of the same cone and hence are projectively equivalent [2, p.49].
For higher-dimensional F the projective relationship among
F-figures is more complicated, and is described in Corollary 4 below.

A polar pair of convex bodies in E 1s a pair (C,D) of

compact convex sets such that c® =D ana 0° = C; this implies the

origin 1is interior to both C and D. When [ 1s a linear subspace

of E and C 1s a convex body in E with O e int C, let c“

denote the polar of CnL relative to L; that is CL = c%L.
The following result is easy to prove directly [4, p.91](5, p.70],
but we derive it from.the basic formula to iilustrate the use of the

formula.
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COROLLARY 1. If (C,D) 1is a polar pair of convex bodies i

E, L 1is a linear subspace of E, and S s the orthogonal pro-
Jection of E onto L, then

SD=C

ita

L

Proof. Let T:I»E be the adjoint of the linear transformation
S:E»L, and let W = D. Since T 1is merely the injection of L

into E, it follows from the basic formula that
(SD)L = CnL.

The desired conclusion is obtained by taking polars of both sides

relative to L.

dim L.

Now suppose that C and D are polytopes, and let &
When £ < dim E it follows from [1l, p.168] that cl is the image
under S of the f%-~skeleton of D, and frcem [6, p.471] that there
is an f-dimensional subcomplex of D's boundary complex that
projects biuniquely onto CL. The next resgult describes a situation
in which it i1s easy to find such a subcomplex.

COROLLARY 2. Suppose that (P,Q) 1s a polar pair of polytopes

in E, F 1s a proper face of P, and H 1s a hyperplane strictly

separating F from all vertices of P~F. Let C(Q,F) denote the

cell-complex formed gi all facets of Q that contain

F' = {qeQ: feFW (fiq) =1},

the face of Q conjugate to F with respect tec the polarity. If

O ¢ H then the orthogonal projection of E onto H carries

VC(Q,F) biuniquely onto i,

YR AP S el e 4 . =l TR
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Proof. Let 0 denote the open halfspace in E that contains
F and 1s bounded by H, and let J  denote the opposite open
halfspace —J+. Let R* denote the open ray that issues from O,
is orthogonal to H, and lies in J*, so that the closure of h*
is the polar of J*. The polytope @Q 1is the intersection of the

closed halfspaces polar to the segments [O,v], where v 1is

f

<
(2]
ip ]
ct
(¢1]
-

l -
o
D
&)
e
o

of P, and for each such v the conjugate facet vi of Q
the bounding hyperplane of the halfspace. HNote that

+ +

Ve B el ixr e g -)[O,v]ozﬂ
vVEF % ved = [0,v]°> R

Since (C(Q,F) 1is formed from all facets v! of Q such that v
is a vertex of F, it follows that WUC(Q,F) is the "lower boundary"

of Q in the sense that
UC(Q,F) = {q € 3Q: (g+R™ )nQ = ¢}.

Hence the orthogonal projection of. E onto H carries UC(Q,F)
biuniquely onto the image of Q, and by Corollary 1 that image is

pH,

When S 1is a translation of E  such that O ¢ int SP, the
polar (SP)o is of course combinatorially equlvalent to the polar
P° = Q. Thus Corollary 2 implies that, for a given F and P,
all F-figures of P have boundary complexes combinatorially equi-
valent to the boundary of tne complex ¢((&,F). 7o establish a
stronger, projective result, we use the following variant of

[5, p.67], which extends a result of [2, p.48].

B e B i o e T T ¥ o
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COROLLARY 3. Suppose that S:E+E 1s a projective transforma-

tion, S* is its adjoint, and C 1s a compact convex set in E

w

uch that Cc dmn S and O ¢ (int C)n(int SC). Then

s2((sc)®) = c°.

Proof. By the basic formula,
s2((sC)°n(dmn-8?)) = Con(rng 82y,

But O ¢ int C and S 1is certainly nonsingular, so
S, = S(0) e int SC. Since dmn S% = {y ¢ E: (S,,y) < 1}, it

follows that (SC)° ¢ dmn S% and hence
s?((sc)®) = c%(rng s?).

But (SC)o is compact and convex, whence the same is true of
s2((sc®)). Since ¢° 1s compact and convex while rng S% is
open, it then follows readilly that c® e rng S? and the proof is
complete.

We are now avle to explain the projective relationship among
the various face figures associated with a given face of a polytope.
For a relative interior point k of a compact convex set K in
E, let Kk denote the polar relative to the flat aff X with
orligin translated to k; that is,

k

K = k+ {me (aff K)=k: & ¢ K-k o (2,m) s 1}.

By Corollary 3 as applied to translations (or by [2, p.48]) the

relative polars Kk

are all projectively equivalent as k ranges
over relint XK. When n = 1 the following becomes the known result

on vertex-figures.

YR ot . B ——
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COROLLARY 4. Let the notation be as in Corollary 2, except

that O ¢ H 1s not required and hence the intersection K = PnH

may be an arbitrary F-figure of P. Then for each k e relint X
k

the relative polar K is the biunique image of UQ(Q,?) under a

projective transformation. Thus when P and F are given and n

— — —————— — ————————— —

F-figures of P are projectively n-equivalent in the sense that

each can be partitioned into n polytopes s¢ that for 1sisn the

1th polytope in the first partition is projectively eguivalent to
the 1th polytope in the second partition.

Proof. For each u ¢ E, let S(u) = u - k. By Corollary 3,
j Sa((SP)o) = Q and hence Q 1s carried onto (SP)° by the pro-
Jective transformation M inverse to 2 By Corollary 2, the

k

set M(UC(Q,F)) maps biluniquely onto K= under the orthogonal

projection NI of E onto H, and IIM 1s then a projective
transformation mapping VUC(Q,F) biuniquely onto kK. For the
final statement of Corollary 4 note that for each facet G of

Q in (C(Q,F), the restriction'of IIM to & admits a projective

{ inverse.
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